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In this document, we present additional details and results.

1 DERIVATION OF OUR BACKWARD PROCESS
The following shows the derivation of Eq. (7) in the main paper.
The goal is to compute x𝑡−1 using x𝑡 based on the definition of the
backward process. We start from:

x𝑡−1 = 𝛼𝑡−1 (𝐿𝑡−1𝝐) + (1 − 𝛼𝑡−1)x0 (1)

Next, we need to construct x𝑡 on the right hand side (RHS) as the
following:

x𝑡−1 = 𝛼𝑡−1 (𝐿𝑡−1𝝐) + (1 − 𝛼𝑡−1)x0
= (𝛼𝑡−1 + 𝛼𝑡 − 𝛼𝑡 ) (𝐿𝑡−1𝝐) + (1 − 𝛼𝑡−1 + 𝛼𝑡 − 𝛼𝑡 )x0
= 𝛼𝑡 (𝐿𝑡−1𝝐) + (𝛼𝑡−1 − 𝛼𝑡 ) (𝐿𝑡−1𝝐) + (1 − 𝛼𝑡 )x0 + (𝛼𝑡 − 𝛼𝑡−1)x0

(2)

The 𝐿𝑡−1 term can be expanded as:

𝐿𝑡−1 = 𝛾𝑡−1𝐿𝑤 + (1 − 𝛾𝑡−1)𝐿𝑏
= 𝐿𝑏 + 𝛾𝑡−1 (𝐿𝑤 − 𝐿𝑏 )
= 𝐿𝑏 + (𝛾𝑡−1 + 𝛾𝑡 − 𝛾𝑡 ) (𝐿𝑤 − 𝐿𝑏 )
= 𝐿𝑏 + 𝛾𝑡 (𝐿𝑤 − 𝐿𝑏 ) + (𝛾𝑡−1 − 𝛾𝑡 ) (𝐿𝑤 − 𝐿𝑏 ) (3)

Based on above and x𝑡 = 𝛼𝑡 (𝐿𝑡𝝐) + (1 − 𝛼𝑡 )x0, we have:

x𝑡−1 = 𝛼𝑡 (𝐿𝑡𝝐) + 𝛼𝑡 (𝛾𝑡−1 − 𝛾𝑡 ) (𝐿𝑤 − 𝐿𝑏 )𝝐 + (𝛼𝑡−1 − 𝛼𝑡 ) (𝐿𝑡𝝐)
+ (𝛼𝑡−1 − 𝛼𝑡 ) (𝛾𝑡−1 − 𝛾𝑡 ) (𝐿𝑤 − 𝐿𝑏 )𝝐 + (1 − 𝛼𝑡 )x0 + (𝛼𝑡 − 𝛼𝑡−1)x0
= x𝑡 + (𝛼𝑡 − 𝛼𝑡−1) (x0 − 𝐿𝑡𝝐) + (𝛾𝑡−1 − 𝛾𝑡 ) (𝛼𝑡−1) (𝐿𝑤 − 𝐿𝑏 )𝝐
= x𝑡 + (𝛼𝑡 − 𝛼𝑡−1) (x0 − 𝐿𝑡𝝐) + (𝛾𝑡 − 𝛾𝑡−1) (𝛼𝑡−1) (𝐿𝑏 − 𝐿𝑤)𝝐

(4)

We ensure that 𝛼𝑡 ≥ 𝛼𝑡−1, 𝛾𝑡 ≥ 𝛾𝑡−1, 0 ≤ 𝛼𝑡 ≤ 1, 0 ≤ 𝛾𝑡 ≤ 1 for
different schedulers.
The training procedure of our method is based on the derived

backward process. For the terms 𝐿𝑡𝝐 , (𝐿𝑤 − 𝐿𝑏 )𝝐 , when 𝐿𝑤 repre-
sents the identity matrix, we do not need to actually perform the
time-consuming matrix-vector multiplication for 𝐿𝑤𝝐 , as in this
case 𝝐 = 𝐿𝑤𝝐 . Therefore, this only term that can introduce overhead
is 𝐿𝑏𝝐 . We experimentally observed that this overhead is negligible
for image resolutions at 642, 1282, 2562.

Extension to DDIM. Here we show that our time-varying noise
model can also extend to DDIM, following the procedure shown
in Heitz et al. [2023]. First, we define:

𝑦𝑡 = (1 − 𝛽𝑡 )𝑥0 + 𝛽𝑡 (𝐿𝑡𝜖) (5)

where 𝑦𝑡 , 𝛽𝑡 are temporally introduced for easier derivations and
will be replaced back by 𝑥𝑡 , 𝛼𝑡 later. Then, we have:

𝑦𝑡−1 = (1 − 𝛽𝑡−1)𝑥0 + 𝛽𝑡−1 (𝐿𝑡−1𝜖)

= (1 − 𝛽𝑡−1)
𝑦𝑡 − 𝛽𝑡 (𝐿𝑡𝜖)

1 − 𝛽𝑡
+ 𝛽𝑡−1 (𝐿𝑡−1𝜖)

=
1 − 𝛽𝑡−1
1 − 𝛽𝑡

𝑦𝑡 −
(1 − 𝛽𝑡−1)𝛽𝑡 (𝐿𝑡𝜖)

1 − 𝛽𝑡
+ 𝛽𝑡−1 (𝐿𝑡−1𝜖) (6)

Based on Eq. (3), we can expand 𝛽𝑡−1 (𝐿𝑡−1𝜖) as two terms:

𝛽𝑡−1 (𝐿𝑡−1𝜖) = 𝛽𝑡−1 (𝐿𝑏 + 𝛾𝑡 (𝐿𝑤 − 𝐿𝑏 ) + (𝛾𝑡−1 − 𝛾𝑡 ) (𝐿𝑤 − 𝐿𝑏 )𝜖
= 𝛽𝑡−1 (𝐿𝑡𝜖) + 𝛽𝑡−1 (𝛾𝑡−1 − 𝛾𝑡 ) (𝐿𝑤 − 𝐿𝑏 )𝜖 (7)

By merging the second and third terms on the right-hand side (RHS)
for the expanded version of Eq. (6), we can get:

𝑦𝑡−1 =
1 − 𝛽𝑡−1
1 − 𝛽𝑡

𝑦𝑡 −
𝐿𝑡𝜖 (𝛽𝑡 − 𝛽𝑡−1)

1 − 𝛽𝑡
+ 𝛽𝑡−1 (𝛾𝑡−1 − 𝛾𝑡 ) (𝐿𝑤 − 𝐿𝑏 )𝜖

=
1 − 𝛽𝑡−1
1 − 𝛽𝑡

(𝑦𝑡 − 𝐿𝑡𝜖) + 𝐿𝑡𝜖 + 𝛽𝑡−1 (𝛾𝑡−1 − 𝛾𝑡 ) (𝐿𝑤 − 𝐿𝑏 )𝜖
(8)

Next, we let 𝛽𝑡 =

√
1−𝛼𝑡√

𝛼𝑡+
√
1−𝛼𝑡

and 𝑦𝑡 =
𝑥𝑡√

𝛼𝑡+
√
1−𝛼𝑡

where 𝛼𝑡 =∏𝑡
𝑠=1 𝛼𝑠 . Lastly, we can derive the backward process as the follow-

ing:

𝑥𝑡−1 =

√
𝛼𝑡−1√
𝛼𝑡

(𝑥𝑡 −
√
𝛼𝑡

√
1 − 𝛼𝑡−1 −

√
𝛼𝑡−1

√
1 − 𝛼𝑡√

𝛼𝑡−1
𝐿𝑡𝜖)

+ (𝛾𝑡 − 𝛾𝑡−1)
√︁
1 − 𝛼𝑡−1 (𝐿𝑏 − 𝐿𝑤)𝜖 (9)

In this case, the network needs to learn 𝐿𝑡𝜖 and
√
1 − 𝛼𝑡−1 (𝐿𝑏−𝐿𝑤)𝜖 .

2 DATASETS, NETWORK ARCHITECTURE AND
TRAINING DETAILS

We use the following datasets for unconditional image generation:
CelebA (642 and 1282 resolutions, 30,000 training images) [Lee
et al. 2020], AFHQ-Cat (642 and 1282 resolutions, 5,153 training
images) [Choi et al. 2020] and LSUN-Church (642 resolution, 30,000
out of 126,227 training images) [Yu et al. 2015]. These partitions
were set in order to replicate the training conditions of the methods
compared here. For conditional image generation, we conduct ex-
periments on image super-resolution using CelebA from 642 to 1282,
322 to 1282 and LSUN-Church from 322 to 1282. For both datasets,
we use 25,000 images for training and 5,000 images for evaluation.

We use the diffuser library [von Platen et al. 2022] to build the 2D
U-Net [Ronneberger et al. 2015] architecture with 6, 7 down- and
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up-sampling layers with skip connections for image resolution of
642, 1282, respectively. The number of channels we use are (128, 128,
256, 256, 512, 512) for 6 layers and (128, 128, 128, 256, 256, 512, 512)
for 7 layers. Self-attention [Vaswani et al. 2017] module is added in
the second last of the down-sampling layer and the second of the
up-sampling layer.
For network training details, we show the number of epochs

and batch size used for training on different datasets for DDIM,
IADB and Ours in Table 1. Table 1 also includes the 𝜏 (Eq. (9) in the
main paper) values we use for all experiments. For the CelebA (642)
experiment, we use the exact linear scheduler for 𝛾𝑡 .

Table 1. Network training details and the choices of 𝜏 (Eq. (9) in the main
paper) for our method. For the CelebA (642) experiment, we use the exact
linear scheduler for 𝛾𝑡 . We use latent diffusion model (LDM) [Rombach
et al. 2022] for the AFHQ-Cat (5122) experiment.

Dataset #Epochs Batchsize 𝜏

AFHQ-Cat (642) 1,000 256 1,000
AFHQ-Cat (1282) 1,000 128 0.2

AFHQ-Cat (LDM, 5122) 1,000 256 1,000
CelebA (642) 1,000 256 (linear)
CelebA (1282) 700 128 0.2

LSUN-Church (642) 1,000 256 1,000
CelebA (642 → 1282) 400 128 0.2
CelebA (322 → 1282) 80 64 0.2

LSUN-Church (322 → 1282) 80 64 0.2

3 ADDITIONAL RESULTS
Gaussian blue noise at different resolutions. Figure 1 visualizes

Gaussian blue noise masks at different resolution using our padding
strategy. For the masks at resolution 1282 and 2562, the seams be-
tween the padded 642 tiles are not visible and the property of blue
noise is still preserved. In addition, we show in Fig. 2 that padding/til-
ing with the same 642 Gaussian blue noise mask results in repetitive
noise patterns, as well as structural artifacts in the frequency spec-
tra.

Gaussian blue noise: 642 1282 2562

Fig. 1. Gaussian blue noise masks at different resolutions using our padding
strategy and the corresponding frequency power spectra. Padding multiple
(642 ) tiles does not produce visible artifact and have unnoticeable impact
on the frequency distribution.

Table 2. Early stopping tests using Gaussian noise only and Gaussian blue
noise only on AFHQ-Cat(1282).𝑇𝑒 represents the time step we apply early
stopping. When𝑇𝑒 = 0, the model falls back to the full backward process.

Ours (Gaussian noise only) Ours (Gaussian blue noise only)
𝑇𝑒 FID (↓) Precision (↑) Recall (↑) FID (↓) Precision (↑) Recall (↑)
200 24.10 0.26 0.08 20.31 0.41 0.11
150 17.39 0.47 0.13 22.42 0.33 0.12
0 10.81 0.78 0.31 17.61 0.59 0.18

Table 3. Image super-resolution metrics using IADB and Ours. Our method
shows consistent improvement over IADB according to the SSIM and PSNR
metrics. 2x and 4x represent super-resolution from 642 to 1282 and 322 to
1282, respectively.

IADB Ours
SSIM (↑) PSNR (↑) SSIM (↑) PSNR (↑)

CelebA (2×) 0.91 30.73 0.92 31.56
CelebA (4×) 0.76 24.74 0.77 25.03

LSUN-Church (4×) 0.57 19.46 0.59 20.00

1282 2562

Fig. 2. Padding/tiling with the same 642 Gaussian blue noise mask to gen-
erate higher-resolution masks results in repetitive noise patterns, as well as
structural artifacts in the frequency spectra.

Early stopping tests. Though using Gaussian blue noise only leads
to worse results in terms of both quantitative and qualitative evalua-
tions, we observe that the image content appears more clear visually
in the early time steps. Based on this observation, we perform a
study on early stopping where we stop at a specific early time step
𝑇𝑒 and reconstruct the final image with one step. As shown in Ta-
ble 2, early stopping at 𝑇𝑒 = 200 gives much better results using
Gaussian blue noise only. However, the quality does not improve
with more steps but fluctuates in terms of the metrics.

Nearest neighbors test. We conduct a nearest neighbors test on
AFHQ-Cat (642) using our method to check if there exists an over-
fitting issue. We test on AFHQ-Cat (642) as it is the dataset with
smallest training samples and lowest resolution among our tested
datasets. As shown in Fig. 4, though the nearest neighbors (second
to fifth columns) may be semantically similar to the query on the
leftmost column, the generated samples are not identical to the
training set samples. This means our method does not suffer overfit
the training data.

2



Blue noise for diffusion models: Supplemental document

Image super-resolution. Table 3 provides the SSIM and PSNR met-
rics for the image super-resolution tasks using IADB and Ours. Our
method consistenly improves over IADB.

Image generation. We provide the full Table 7 for quantitative
comparisons including FID, Precision and Recall on image genera-
tion tasks. More results, comparisons and interactive visualization
can be found in the Supplemental HTML.

Extension to DDIM [Song et al. 2021]. Detailed derivations of ex-
tending our time-varying noise model to DDIM can be found in
Supplemental document Sec. 1. Table 4 shows preliminary results on
AHFQ-Cat (642) and Ours (DDIM) gets better FID than the original
DDIM.

Extension to LDM [Rombach et al. 2022]. Our time-varing noise
model can also be incorporated into latent diffusionmodel (LDM) [Rom-
bach et al. 2022] for high-resolution image generation. We compare
IADB and Ours used for latent diffusion in Table 5 and the prelimi-
nary results show that Ours gets better FID than IADB. The visual
comparisons can be found in the main paper.

Ablation on 𝛾-scheduler. Table 6 compares different parameters
and functions of our𝛾-scheduler. For our sigmoid-based𝛾-scheduler,
𝛾 = 0.02 gives better results than 𝛾 = 1000, showing the importance
of choosing the 𝛾 value for our 𝛾-scheduler. Using the cosine-based
function proposed by [Nichol and Dhariwal 2021] resulted in worse
FID, showing the importance of choosing the function for our 𝛾-
scheduler.

Ablation on noise mask size for padding/tiling. Figure 5 shows
an ablation study on padding/tiling using different Gaussian blue
noise sizes (12, 42, 162, 322, 642) on the AFHQ-Cat (1282) dataset.
Note that 12 size is equivalent to use Gaussian (white) noise. We
use 642 size as our method for all experiments. The figure shows
that increasing the size of Gaussian blue noise mask leads to lower
FID than using Gaussian (white) noise in terms of mean values of
multiple experiments. However, the standard deviations of using
tiled Gaussian blue noise mask can be higher than using Gaussian
(white) noise.

Timing. Here, we present the timing results obtained using a
single RTX 2080 NVIDIA GPU for our pipeline. To assess the average
inference time for both IADB and our networks, we conducted tests
with a batch size of 1 and 𝑇 = 250. The network architectures are
identical, except for our network having a 6-channel output instead
of 3. The average network inference time is approximately 0.020
seconds for generating a 642 image and around 0.023 seconds for
a 1282 image, applicable to both IADB and our method. Regarding
noise generation timing, our approach takes roughly 0.0001 seconds
to generate a Gaussian blue noise mask at a resolution of 642 and
about 0.0002 seconds to generate a Gaussian noise or Gaussian blue
noise at a resolution of 1282.
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best is underlined.
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Fig. 5. Ablation study on different Gaussian blue noise sizes used for
padding/tiling (12, 42, 162, 322, 642) experimented on the AFHQ-Cat (1282)
dataset. Note that 12 size is equivalent to use Gaussian (white) noise only.
We use 642 size as our method in all experiments.
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Fig. 4. We conduct a nearest neighbors test showing our method does not
overfit the training data. Generated samples of ourmethod trained onAFHQ-
Cat (642) are shown in the leftmost column. Training set nearest neighbors
are in the remaining columns, ordered from the 1st-nearest neighbor to the
4th-nearest neighbor (based on pixel-wise mean squared distance) from left
to right.
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