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Fig. 1. Our framework facilitate point pattern design by representing both density and correlation as a three-channel raster image (a). These images can be
edited (c) in terms of their density or correlation using off-the-shelf image manipulation software. The resulting point patterns are shown before (b) and after
the edits (d). Please see the accompanied supplemental material for vector graphic images.

Point patterns are characterized by their density and correlation. While
spatial variation of density is well-understood, analysis and synthesis of
spatially-varying correlation is an open challenge. No tools are available to
intuitively edit such point patterns, primarily due to the lack of a compact rep-
resentation for spatially varying correlation. We propose a low-dimensional
perceptual embedding for point correlations. This embedding can map point
patterns to common three-channel raster images, enabling manipulation
with off-the-shelf image editing software. To synthesize back point patterns,
we propose a novel edge-aware objective that carefully handles sharp varia-
tions in density and correlation. The resulting framework allows intuitive
and backward-compatible manipulation of point patterns, such as recoloring,
relighting to even texture synthesis that have not been available to 2D point
pattern design before. Effectiveness of our approach is tested in several user
experiments. Code is available at https://github.com/xchhuang/patternshop.
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1 INTRODUCTION
Point patterns are characterized by their underlying density and
correlations. Both properties can vary over space (Fig. 1), but two
key challenges limit the use of such patterns: first, a reliable repre-
sentation and, second, the tools to manipulate this representation.

While algorithms [Zhou et al. 2012; Öztireli and Gross 2012] are
proposed in the literature to generate point patterns with specific
correlations (e.g., blue-, green-, pink-, etc. noise), designing spe-
cific correlation requires understanding of the power spectrum or
Pair Correlation Function (PCF) [Heck et al. 2013] only a handful
of expert users might have. Further, the space spanned by these
colored noises (correlations) is also limited to a handful of noises
studied in the literature [Zhou et al. 2012; Öztireli and Gross 2012].
Addressing this, we embed point correlations in a 2D space in a
perceptually optimal way. In that space, two point correlations have
similar 2D coordinates if they are perceptually similar. We simply
sample all realizable point correlations and perform Multidimen-
sional scaling (MDS) on a perceptual metric, without the need for
user experiments, defined on the pairs of all samples. Picking a 2D
point in that space simply selects a point correlation. Moving a point
changes the correlation with perceptual uniformity.
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The next difficulty to adopt point patterns of spatially varying
density and correlations is the lack of tools for their intuitive ma-
nipulation. Modern creative software gives unprecedented artis-
tic freedom to change images by relighting [Pellacini 2010], paint-
ing [Strassmann 1986; Hertzmann et al. 2001], material manipulation
[Pellacini and Lawrence 2007; Di Renzo et al. 2014], changing canvas
shape [Rott Shaham et al. 2019], completingmissing parts [Bertalmio
et al. 2000], as well as transferring style [Gatys et al. 2016] or tex-
tures [Efros and Freeman 2001; Zhou et al. 2018; Sendik and Cohen-
Or 2017]. Unfortunately, no such convenience exists when aiming
to manipulate point patterns as previous approaches are specifically
designed to process three-channel (RGB) raster images. Our core
idea is to convert point patterns into off-the-shelf three-channel
raster image. We use the 𝐶𝐼𝐸𝐿𝐴𝐵 color space to encode density
as one-dimensional luminance (L) and two-dimensional chroma
(AB) as correlation. The resulting images can the be manipulated
harnessing all the power of typical raster image editing software.
While spatially-varying density is naturally mapped to single-

channel images, this is more difficult for correlation. Hence, it is of-
ten assumed spatially-invariant and represented by either the power
spectrum [Ulichney 1987; Lagae and Dutre 2008] or the PCF [Wei
and Wang 2011; Öztireli and Gross 2012]. Some work also handles
spatially-varying density or/and correlation [Chen et al. 2013; Roveri
et al. 2017], but with difficulties in handling sharp variation of den-
sity and/correlation. We revisit bilateral filtering to handle sharp
variation both in density and correlation.

Finally, we show how to generate detailed spatial𝐶𝐼𝐸𝐿𝐴𝐵maps of
correlation and density given an input point pattern using a learning-
based system, trained by density and correlation supervision on a
specific class of images, e.g., human faces.
In summary, we make the following contributions:

• Two-dimensional perceptual embedding of point correlations,
• Spatially-varying representation of point pattern density and
perceptually-embedded correlation as LAB raster images,

• A novel definition of edge-aware correlation applicable to hard
edges in density and/or correlation,

• An optimization-based system to synthesize point patterns de-
fined by density and embedded correlation maps according to
said edge-aware definition,

• Intuitive editing of point pattern correlation and density by re-
coloring, painting, relighting, etc. of density and embedded cor-
relation maps in legacy software such as Adobe Photoshop.

• A learning-based system to predicts density and embedded cor-
relation maps from an input point pattern.

2 PREVIOUS WORK
Sample correlations. Correlations among stochastic samples are

widely studied in computer graphics. Fromhalftoning [Ulichney 1987],
reconstruction [Yellott 1983], anti-aliasing [Cook 1986; Dippé and
Wold 1985] toMonte Carlo integration [Durand 2011; Singh et al. 2019],
correlated samples havemade a noticeable impact. Recent works [Xu
et al. 2020; Zhang et al. 2019] have also shown direct impact of cor-
related samples on training accuracy in machine learning. Among
different sample correlations, blue noise [Ulichney 1987] is the most
prominent in literature. Blue noise enforces point separation and

is classically used for object placement [Kopf et al. 2006; Reinert
et al. 2013] and point stippling [Deussen et al. 2000; Secord 2002; Schulz
et al. 2021]. However, modern approaches do not insist on point sepa-
ration in faithful stippling [Martín et al. 2017; Kim et al. 2009; Deussen
and Isenberg 2013; Rosin and Collomosse 2012]. Different kind
of colored noises (e.g., green, red) are studied in literature [Lau
et al. 1999; Zhou et al. 2012] for half-toning and stippling purposes.
But the space spanned by these point correlations is limited to a few
bases [Öztireli and Gross 2012]. We propose an extended space of
point correlations that helps express large variety of correlations.
Our framework embeds these correlations in a two-dimensional
space, allowing representation of different correlations with simple
two-channel color maps. This makes analysis and manipulation of
correlations easier by using off-the-shelf image editing software.

Analysis. To analyze different sample correlations, various spec-
tral [Ulichney 1987; Lagae and Dutre 2008] and spatial [Wei and
Wang 2011; Öztireli and Gross 2012] tools are developed. For spec-
tral methods, the Fourier power spectrum and it’s radially averaged
version are used to analyze sample characteristics. In the spatial
domain, PCF is used for analysis which evaluates pairwise distances
between samples that are then binned in a 1D or a 2D histogram.

Synthesizing blue-noise correlation. Blue noise sample correlation
is most commonly used in graphics. There exist various algorithms
to generate blue noise sample distributions (see Yan et al. [2015]).
Several optimization-basedmethods [Lloyd 1982; Balzer et al. 2009; Liu
et al. 2009; Schmaltz et al. 2010; Fattal 2011; De Goes et al. 2012; Heck
et al. 2013; Kailkhura et al. 2016; Qin et al. 2017], as well as tiling-
based [Ostromoukhov et al. 2004; Kopf et al. 2006;Wachtel et al. 2014]
and number-theoretic approaches [Ahmed et al. 2015, 2016, 2017]
are developed over the past decades to generate blue noise samples.

Synthesizing other correlations. There exist methods to gener-
ate samples with different target correlations. For example, Zhou
et al. [2012] and Öztireli and Gross [2012] proposed to synthesize
point correlations defined from a user-defined target PCF. Wach-
tel et al. [2014] proposed a tile-based optimization approach that
can generate points with a user-defined target power spectrum. All
these methods require heavy machinery to ensure the optimization
follows the target. Leimkühler et al. [2019] simplified this idea and
proposed a neural network-based optimization pipeline. All these
approaches, however, require the user to know how to design a real-
izable PCF or a power spectrum [Heck et al. 2013]. This can severely
limit the usability of point correlations to only handful of expert
users. Our framework lifts this limitation and allows us to simply
use a two-dimensional space to define correlations. Once a user
picks a 2D point —which we visualize as color of different chroma—
our framework automatically finds the corresponding PCF from the
embedded space and synthesizes the respective point correlations.
It is also straightforward to generate spatially varying correlations
using our framework by defining a range of colors as correlations.
So far, only Roveri et al. [2017] have synthesized spatially varying
correlations but remain limited by how well a user can design PCFs.

Image and point pattern editing. Editing software allows artists
to tailor the digital content to their needs. Since color image is the
easily available data representation, today’s software are specifically
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Varying density and correlation Varying density, constant correlation Constant density, varying correlation

Varying density Varying correlation Varying density Constant correlation Constant density Varying correlation

Fig. 2. Our framework allows manipulating density and correlations independently. Top row shows the point set synthesized using the density (left) and the
correlation map (right) shown in the bottom row. The first column shows a point set when both density and correlation are spatially varying. Second column
has constant correlation but spatially varying density. Third column point set reproduces the Siggraph logo just from spatially varying correlations.

designed to process three-channel (RGB) images. Modern pipelines
allow effects like relighting [Sun et al. 2019], recoloring, image retar-
geting [Rott Shaham et al. 2019], inpainting [Bertalmio et al. 2000],
style transfer [Gatys et al. 2016] and texture synthesis [Efros and
Freeman 2001; Zhou et al. 2018; Sendik and Cohen-Or 2017] to be
performed directly in the three-channel RGB representation. How-
ever, most digital assets e.g., materials, color pigments, light fields,
patterns, sample correlations, are best captured in high-dimensional
space. This makes it hard for image-based software to facilitate
editing these components. A lot of research has been devoted in the
past to support editing materials [Pellacini and Lawrence 2007; An
et al. 2011; Di Renzo et al. 2014], light fields [Jarabo et al. 2014],
color pigments [Sochorová and Jamriška 2021], natural illumina-
tion [Pellacini 2010] with workflows similar to images.
Synthesizing textures with elements [Ma et al. 2011; Reinert

et al. 2013; Emilien et al. 2015; Reddy et al. 2020; Hsu et al. 2020]
and patterns with different variations [Guerrero et al. 2016] us-
ing 2D graphical primitives has also been proposed. These work
focus on updating point and element locations to create patterns
for user-specific goals and designing graphical interface for user
interactions. However, none of the previous work allows editing
spatially-varying point correlations in an intuitive manner. In this
work, we propose a pipeline to facilitate correlation editing using
simple image operations. Instead of directly working with points,
we encode their corresponding spectral or spatial statistics in a

low-dimensional (3-channel) embedding. This low-dimensional la-
tent space can then be represented as an image in order to allow
artists to manipulate point pattern designs using any off-the-shelf
image editing software. There exists previous work that encode
point correlations [Leimkühler et al. 2019] for a single target or
point pattern structures [Tu et al. 2019] using a neural network. But
these representations do not disentangle the underlying density and
correlation, thereby, not facilitating editing operations.

Latent and perceptual spaces. Reducing high-dimensional signals
into low-dimensional ones has several benefits. Different from latent
spaces in generative models which are still high-dimensional, such
as for StyleGAN [Abdal et al. 2019], the application we are interested
in here is a usability one, where the target space is as low as one-,
two- or three- dimensional, so users can actively explore it, e.g., on
a display when searching [Duncan and Humphreys 1989]. This is
common to do for color itself [Fairchild 2013; Nguyen et al. 2015].
Ideally, the embedding into a lower dimension is done such, that
distance in that space is proportional to perceived distances [Lindow
et al. 2012]. This was pioneered by Pellacini et al. [2000] for BRDF,
with a methodology close to ours (MDS). Other modalities, such as
acoustics [Pols et al. 1969], materials [Wills et al. 2009], textures
[Henzler et al. 2019] and even fabricated objects [Piovarči et al. 2018]
were successfully organized in latent spaces.
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Fig. 3. The workflow of Patternshop. A user can select a point pattern and
run it through a Neural Network (NN) to produce a three-channel raster
image, or draw that image directly, ab-initio in a program like Adobe Photo-
shop or GIMP. The edited pattern can be synthesized using our optimization.

3 OVERVIEW
Fig. 3 shows the workflow of Patternshop: A user selects a point
pattern with spatially varying density and correlation and runs this
through a NN to produce a three-channel raster image. Alterna-
tively, they can draw that image directly, ab-initio in a program like
Adobe Photoshop or GIMP. This raster image can then be edited in
any legacy software. Density can be manipulated by editing lumi-
nance. To change correlation, we provide a perceptual 2D space of
point correlations (Fig. 5). This space is perceptually uniform, i.e.,
distances are proportional to human perception and covers a wide
range, i.e., it contains most realizable points correlations. Figure 2
demonstrates one such example edit. A user may edit spatially vary-
ing density (Fig. 2b) or correlation (Fig. 2c) or both (Fig. 2a) using
our three-channel representation. A final optimizer produces the
edited point pattern.

Correlations are generally characterized by a PCF or power spec-
trum. A PCF encodes spatial statistics—e.g., the pairwise distances
between points—distributed over an 𝑚-bin histogram. Handling
such an 𝑚-dimensional correlation space is neither intuitive nor
supported by existing creative software. To tackle this problem,
in Sec. 4, we embed Pair Correlation Function (PCF) into a two-
dimensional space. We optimize the distance between all pairs of
latent coordinates in that space to be proportional to the perceived
visual distance between their point pattern realizations.

Moreover, synthesizing such patterns requires support for edge-
aware transitions for both density and correlation. In Sec. 5, we
outline our formalism to handle such edge-aware density and cor-
relations. Sec. 6 defines the optimization objective, that enables
finding a point pattern to have the desired density and correlation.
Sec. 7 provides details on the implementation. Sec. 8 outlines var-
ious application scenarios supported by our pipeline, followed by
comparative analyses, concluding discussions and future works.

4 LATENT EMBEDDING OF POINT CORRELATIONS
Overview. In order to encode the correlation of a point pattern

as a 2D coordinate, we first generate a corpus of basic point pat-
terns (each with constant correlation). Next, we extract perceptual
features of these patterns. The pairwise distance between all fea-
tures forms a perceptual metric. This metric is used to embed a
discrete set of basis correlations into a 2D space. From this discrete
mapping, we can further define a continuous mapping from any
continuous correlations into a latent space as well as back from any

continuous latent space coordinate to correlations. This process is a
pre-computation, only executed once, and its result can be used to
design many point patterns, same as one color space can be used to
work with many images. We detail each step in the following:

Data generation. First, we systematically find a variety of point
patterns to span a gamut of correlations {𝑔𝑖 }. We start by defining
a power spectrum as a Gaussian mixture of either (randomly) one
or two modes with means randomly uniform across the domain
and uniform random variance of up to a quarter of the unit domain
(Fig. 4a). Not all such power spectra are realizable, therefore, we run
a gradient descent optimization [Leimkühler et al. 2019] to obtain
realizable point patterns (Fig. 4b). We finally use the PCF of that
realization 𝑃𝑖 as 𝑔𝑖 . Please see Supplemental Sec. 1.1 for details.

Metric. A perceptual metricD𝑖, 𝑗 assigns a positive scalar to every
pair of stimuli 𝑖 and 𝑗 (here: point patterns) which is low only if the
pair is perceived similar. As point patterns are stationary textures,
their perception is characterized by the spatially aggregated statis-
tics of their visual features [Portilla and Simoncelli 2000]. Hence,
the perceived distance between any two point patterns with visual
features v𝑖 and v𝑗 is their L1 distance D𝑖, 𝑗 = |v𝑖 − v𝑖 |1.

To compute visual feature statistics v𝑖 for one pattern 𝑃𝑖 , we first
rasterize 𝑃𝑖 three times with point splats of varying Gaussian splat
size of 0.015, 0.01 and 0.005 [Tu et al. 2019]. Second, each image of
that triplet is converted into VGG feature activation maps [Simon-
celli and Olshausen 2001]. Next, we compute the Gram matrices
[Gatys et al. 2016] for the pool_2 and pool_4 layers in each of the
three images. Finally, we stack the triplet of pairs of Gram matrices
into a vector v𝑖 of size 3 × (642 + 1282) = 61440.
Figure 4 shows four example patterns leading to a 4 × 4 dissimi-

larity matrix.

Dimensionality reduction. To first map the basis set of {𝑃𝑖 } to
latent 2D codes, we apply MDS (Fig. 4f). MDS assigns every pattern
𝑃𝑖 a latent coordinate z𝑖 so that the joint stress of all assignments

𝑐Emb ({z𝑖 }) =
∑︁
𝑖, 𝑗

(D𝑖, 𝑗 − ||z𝑖 − z𝑗 | |)2 (1)

is minimized across the set {z𝑖 } of latent codes.
After optimizing with Eq. (1), we rotate the latent coordinates,

so that blue noise is indeed distributed around a bluish color of the
chroma plane and then normalize the 2D coordinates to [0, 1]2.

Encoding. Once the latent space is constructed, we can sample
correlation 𝑔 at any continuous coordinate z in the latent space
using the Inverse Distance Weighted (IDW) method:

𝑓 (z) =
∑︁
𝑖

𝑔𝑖𝑤𝑖 (z)/
∑︁
𝑖

𝑤𝑖 (z) with (2)

𝑤𝑖 (z) = 1/max(( | |z − z𝑖 | |2)𝜙 (z) , 10−10). (3)

The idea is to first compute the distance between the current location
z and the existing locations z𝑖 in theMDS space. The inverse of these
distances, raised to a power 𝜙 (z), is used as the weight to interpolate
the correlations 𝑔𝑖 . 𝜙 ∈ R2 ↦→ R is a function that is low in areas
of the latent space with a low density of examples and high for
areas where MDS has embedded many exemplars. We implement 𝜙
by kernel density estimation on the distribution {z𝑖 } itself with a
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𝑚

(a) Radial power spectrum profiles (b) Realized point sets (c) VGG feature maps feature vectors Dissimilarity matrix 2D latent space

VGG MDS
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Fig. 4. We illustrate the embedding from𝑚-dimensional space to a 2D space. (a) Random power spectra are generated and their corresponding realizable
point patterns in (b) are synthesized using gradient descent. The point patterns are then rasterized and pass through a pre-trained VGG network [Simonyan
and Zisserman 2015] to generate (c) feature maps, which are flattened into feature vectors (d). A dissimilarity matrix (e) computed from these VGG feature
vectors are used to bring𝑚-dimensional representation to a 2D space (f) using MDS (Sec. 4).

Parzen window of size 0.01 and clamping and scaling this density
linearly to the (3, 6)-range.

Decoding. We can now also embed any correlation 𝑔, that is not
in the discrete basis set {𝑔𝑖 }. Let v̄ be the visual features stats of 𝑔.
We simply look up the visual-feature-nearest training exemplar and
return its latent coordinate

𝑓 −1 (𝑔) = arg minz𝑖 | |v̄ − v𝑖 | |2 . (4)

Latent space visualizations. The latent space 𝑓 (z) of correlations
is visualized in Fig. 5 and more visualizations can be found in Supple-
mental Fig. 5. Every point in 𝑓 (z) is a PCF and we use the machinery
that will be defined in Sec. 6.1 to generate a point pattern that has
such a spatially-varying correlation.

5 EDGE-AWARE DENSITY AND CORRELATIONS
Assumptions. Input to this step is a discrete point pattern 𝑃 , a con-

tinuous density map 𝑑 and a continuous guidance map ℎ to handle
spatially-varying correlations. The aim is to estimate correlation at
one position so it is unaffected by points that fall onto locations on
the other side of an edge. Output is a continuous spatially-varying
correlation map.

Definition. We define the edge-aware radial density function as

𝑔(𝑃,𝑑, ℎ) (x, 𝑟 ) =
𝑛∑︁
𝑖=1

^ (x, x𝑖 , 𝑟 , 𝑑, ℎ), (5)

a mapping from location x, radius 𝑟 to density, conditioned on the
point pattern 𝑃 with 𝑛 points subject to the kernel

^ (x, x𝑖 , 𝑟 , 𝑑, ℎ) =
S(x𝑖 , x, 𝑟 , 𝑑) · H (x𝑖 , x, ℎ)∑

y∈R2 S(y, x, 𝑟 , 𝑑) · H (y, x, ℎ) , (6)

that combines a spatial term S and a guidance termH , both to be
explained next. Intuitively, this expression visits all discrete points
x𝑖 and soft-counts if they are in the “relevant distance” and on the
“relevant side” of the edge relative to a position x and a radius 𝑟 . The
y locations represent a dense grid used to compute the normalization
term as explained next.

Spatial term. The spatial S-term is a Gaussian N with mean 𝑟

and standard deviation (bandwidth) 𝜎 . It is non-zero for distances

similar to 𝑟 and falls of with bandwidth 𝜎 :

S(x𝑖 , x, 𝑟 , 𝑑) = N
(
| |x𝑖 − x| |2
𝑑 (x) ; 𝑟, 𝜎

)
(7)

The distance between two points is scaled by the density at the
query position. As suggested by Zhou et al. [2012], this assures that
the same pattern at different scales, i.e., densities, indeed maps to
the same correlation. Bandwidth 𝜎 is chosen proportional to the
number of points 𝑛.

Guidance term. The H -term establishes if two points x and x𝑖 in
the domain are related. This is inspired by the way Photon Map-
ping adapts its kernels to the guide by external information such
as normals [Jensen 2001] or joint image processing makes use of
guide images [Petschnigg et al. 2004]. If x is related to x𝑖 , x𝑖 is used
to compute correlation or density around x, otherwise, it is not.
Relation of x and x𝑖 is measured as the pair similarity

H(x, x𝑖 , ℎ) = | |ℎ(x)T · Σ · ℎ(x𝑖 ) | |, (8)

where ℎ is a guidance map and Σ is the (diagonal) bandwidth matrix,
controlling how guide dimensions are discriminating against each
other. The guidance map can be anything with distances defined on
it, but our results will use correlation itself.

Normalization. The denominator in Eq. (6) makes the kernel sum
to 1 when integrated over y for a fixed x as in normalized convo-
lutions [Knutsson and Westin 1993]. Also, if ^ extends outside the
domain for points close to the boundary, this automatically re-scales
the kernel.

x

Fig. 6. Density estimation kernel.

Example. Fig. 6 shows this
kernel in action. We show the
upper left corner of the domain
(white) as well as some area
outside the domain (grey with
stripes). Correlation is com-
puted at the yellow point x.
The kernel’s spatial support is
the blue area. The area outside the domain (stripes) will get zero
weight. Also, the grey area inside the domain which is different in
the guide (due to different correlation) is ignored, controlled by the
H -term.
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Fig. 5. The left image shows the resynthesized point pattern with a continuously varying correlations in the 2D latent space 𝑓 (z) . The bottom-right (black)
square shows different coordinates and their color in 𝐶𝐼𝐸𝐿𝐴𝐵. Point patterns with the corresponding spatially-invariant correlations for each of these
coordinates are shown with respective color coding in the right halve. Blue noise can be spotted on the top-right side of the space.

Discussion. Our formulation is different from the one used by
Chen et al. [2013], who warp the space to account for guide differ-
ences, as Wei and Wang [2011] did for density variation. This does
not work for patterns with varying correlation: a point on an edge
of a correlation should not contribute to the correlation of another
point in a scaled way. Instead of scaling space, we embed points
into a higher dimensional space [Chen et al. 2007; Jensen 2001] only
to perform density estimation on it.

Blue
noise

Green
noise

PCF

Fig. 7. Bilateral.

Consider estimating the PCF
at the yellow point, close to an
edge between an area of blue and
an area of green noise as shown
on Fig. 7. The dark gray point
lies on the other side of the edge.
In common bilateral handling,
it would contribute to a differ-
ent bin (orange horizontal move-
ment, distance in PCF space) in
the formulation of Wei [2010], which is adequate for density, but not

for correlation. Our approach suppresses those points (blue arrow
and vertical movement, density in PCF space).

6 SYNTHESIS AND EDITING
Wewill now derive a method to synthesize a point pattern with a de-
sired spatially varying target density and correlation (Sec. 6.1). Users
can then provide these target density and correlation as common
raster images (Sec. 6.2) and edit them in legacy software (Sec. 6.3).

6.1 Synthesizing with desired correlation and density
Given Eq. (5) we can estimate 𝑔(𝑃,𝑑, ℎ), the spatially-varying PCF
field for a triplet of point pattern 𝑃 , density map 𝑑 and guidance
map ℎ. Recall, we can also compare this spatially-varying PCF to
another one, we shall call 𝑔, e.g., by spatially and radially integrating
their point-wise norms. Hence, we can then optimize for a point
pattern 𝑃 to match a given density map 𝑑 , a given guidance map ℎ
and a given target PCF 𝑔 by

arg min𝑃 𝑐Syn (𝑃) =
∫
𝑥

∫
𝑟

(𝑔(𝑃,𝑑, ℎ) (x, 𝑟 ) − 𝑔(x, 𝑟 ))2 dx d𝑟 . (9)
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We use 𝑔 as our guidance map ℎ to evaluate 𝑔. Note, that we do not
explicitly ask the result 𝑃 to have a specific density. This happens
implicitly: recall, that our edge-aware correlation estimate Eq. (7)
will scale point-wise distances according to density before comput-
ing the PCF. Hence, the only way for the optimization to produce
the target 𝑔 is to scale the distances proportional to density.

In practice, we Monte Carlo-estimate this objective using 10 × 10
jittered samples {q𝑖 } ∈ [0, 1]2 along the spatial dimension and𝑚
regular samples {𝑟 𝑗 } along the radius dimension (ranging from 0.1
to 2𝑟max as detailed in Sec. 7), as in

𝑐Syn (𝑃) =
10×10∑︁
𝑖=1

𝑚∑︁
𝑗=1

(𝑔(𝑃,𝑑, 𝑔) (q𝑖 , 𝑟 𝑗 ) − 𝑔(q𝑖 , 𝑟 𝑗 ))2 . (10)

and optimize over 𝑃 using ADAM [Kingma and Ba 2014].
To have this synthesis produce a point pattern 𝑃 , a user now only

needs to provide a spatially-varying density 𝑑 and correlation 𝑔.

6.2 Encoding into raster images
Users provide density 𝑑 , and correlation 𝑔 as common discrete raster
images on which we assume suitable sampling operations to be
defined (e.g., bilinear interpolation) to evaluate them at continuous
positions.
For density 𝑑 , this is trivial and common practice in the point

pattern literature. For correlation, 𝑔, we use our embedding 𝑓 from
Sec. 4 to decode the complex PCF from a latent 2D coordinate,
from only two numbers per spatial location. Hence, density and
correlation require only three numbers per spatial position. We
pack those three number into the three image color channels. More
specifically, density into the 𝐿 and latent correlation into the 𝐴𝐵
channel of a 𝐶𝐼𝐸𝐿𝐴𝐵 color image, we call 𝐹 .

6.3 Editing point patterns as raster images
Any editing operation that is defined on a three-channel image in
any legacy image manipulation software can now be applied to the
point pattern feature image 𝐹 .
Working in 𝐶𝐼𝐸𝐿𝐴𝐵 color space, users have freedom to select

the first-channel to edit density, the two latter channels to edit the
correlations, or edit both at the same time. Since 𝐿 and 𝐴𝐵 channels
do not impact each other, 𝐶𝐼𝐸𝐿𝐴𝐵 color space is ideal for manip-
ulating the density or the correlation independently as luminance
and chrominance are perceptually decorrelated by-design.
While this is in a sense the optimal space to use when editing

point patterns in legacy image editing software, it is not necessarily
an intuitive user interface. In a fully-developed software system,
on top of legacy software, a user would not be shown colors or
pick colors to see, respectively, edits, correlations. Instead, they
would only be presented the point pattern, and select from an image
similar to Fig. 5, and all latent encoding would be hidden. We will
give examples of such edits in Sec. 8. For the case of ab-initio design,
no input point pattern is required and a user would freely draw
correlation and density onto a blank canvas.

7 IMPLEMENTATION
We implement our frameworkmainly in PyTorch [Paszke et al. 2017].
All experiments run on a workstation with an NVIDIA GeForce

RTX 2080 graphics card and an Intel(R) Core(TM) i7-9700 CPU @
3.00GHz.

Embedding. In total, we collect 1,000 point patterns and each
of them has 1,024 point samples. To perform MDS, the 2D latent
coordinates {z𝑖 } are initialized randomly in [0, 1]2. The MDS opti-
mization Eq. (1) runs in batches of size 20, using the ADAM opti-
mizer [Kingma and Ba 2014] with a learning rate of 0.005 for 1, 000
iterations.
If latent coordinates are quantized to 8 bit, there is only 2562

many different possible correlations {𝑔𝑖 }. We pre-compute these
and store them in a 256×256×𝑚 look-up table lutw.r.t. each latent
2D coordinate to be used from here on.

Edge-aware PCF estimator. To compute the pair similarity be-
tween two guide values in ℎ, the bandwidth matrix Σ is set to be
0.005-diagonal. We use𝑚 = 20 bins to estimate the PCF. The bin-
ning is performed over the distance range from 0.1 to 2 𝑟max, where
𝑟max = 2

√︃
1

2
√

3𝑛
. The point count 𝑛 is chosen as the product between

a constant and the total inverse intensity in the 𝐿-channel of the
given feature image 𝐹 , such that an image with dark pixels has more
points. To compute local PCF for each pixel in 𝐹 , we consider only
the 𝑘-nearest neighbor points, and not all points, where 𝑘 = 50 and
𝜎 = 0.26.

With each PCF, 𝑔𝑖 we also pre-compute and store _𝑖 , the best
Learning Rate (LR) (see Supplemental Sec. 1.2 for a definition) as we
found different spectra to require different LRs. During synthesis,
we find the LR for every point, by sampling the correlation map
at that point position and using the LR of the manifold-nearest
exemplar of that correlation.

Synthesis. The initial points when minimizing Eq. (9) are ran-
domly sampled in [0, 1]2 proportional to the density map 𝑑 and the
optimization runs for 5, 000 iterations. We note that the denominator
in Eq. (5) is a sum over many points which could be costly to evalu-
ate, but as it does not depend on the point pattern 𝑃 itself, it can be
pre-computed before optimizing Eq. (9). We use C++ and Pybind11
to accelerate this computation and the whole initialization stage
takes around 5 seconds.
To faithfully match the intensity of point stipples with the cor-

responding density map [Spicker et al. 2017], we also optimize for
dot sizes as a post processing step.

Editing. We use Adobe Photoshop 2022 for editing which has
native 𝐶𝐼𝐸𝐿𝐴𝐵 support. We devised two simple interfaces scripted
into Adobe Photoshop 2022, one for interactive visualization of
colors and point correlations and the other for editing and synthesis.

8 RESULTS
In this section, we demonstrate our design choices and compare
our pipeline with existing methods through some application sce-
narios. We also perform a user study to evaluate the effectiveness
and usability of our framework. More results can be found in the
accompanied supplemental material.
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(a) (b) (c) (d)

Fig. 8. We start with a given density and correlation map (a), and perform edits directly on this three-channel raster image (c) to obtain the point pattern in (d)
after resynthesis. In (c), we edit the density map (𝐿-channel) with gradients from left to right and edit correlations in the 𝐴𝐵-channel to enhance different
segments of the image. No neural network is used here. Source image credit: Artmajeur user Bianchini Jr. Used with permission under Media Licence.

8.1 Ab-initio point pattern design
We demonstrate examples of point pattern edits in Fig. 1 and Fig. 8.
We start with a given density and correlation map (1st and 3rd
columns). We choose blue noise for the correlation map to start with
and start editing both the density (𝐿-channel) and the correlation
(𝐴𝐵-channel). For Fig. 1, we add density gradient transition on the
background and add a simple leaf by editing the density channel.
We also assign different correlations to different segments like the
butterfly, leaf and background. For Fig. 8, the correlation edits are
done in the 𝐴𝐵 channel of the Picasso image to assign different
correlations to different image segments, e.g., background, face, cap
and the shirt. We also add a gradient density in the background
from left to right by editing the 𝐿-channel of the image.

We show more results in Supplemental Fig. 4 to demonstrate that
our framework provides a straightforward way to edit spatially-
varying point correlations by picking correlations from our correla-
tion space (Fig. 5), instead of by designing PCFs or power spectra.

8.2 Neural network-aided point pattern design
Besides manually drawing correlation and density, we propose
a second alternative: a NN, based on pix2pix [Isola et al. 2017],
which automatically produces density and correlation maps from
legacy point patterns. We curated paired synthetic datasets for class-
specific training from three categories, including human faces from
CelebA by Lee et al. [2020], animal faces from Choi et al. [2020]
and churches from Yu et al. [2015]. As the NN maps point patterns
to raster images, training data synthesis proceeds in reverse: For
each of the three-channel raster image, the gray-scale image of each
original image is directly used as the 𝐿-channel. We generate the
correlation map (𝐴𝐵-channel) by assigning them random chroma
i.e., latent correlation coordinates. Next, our synthesis from Sec. 6.1
is used to instantiate a corresponding point pattern. Finally the
patterns is rasterized, as pix2pix works with raster images. For
further data generation, network architecture and training details,
please see Supplemental Sec. 1.4. We also perform an ablation study
on the network architecture and training in Supplemental Fig. 6.

This pipeline enables freely changing local density or correlation
in point patterns of different categories as seen in Fig. 9. As shown
in Fig. 10, this also allows advanced filtering such as relighting or
facial expression changes on point patterns. In Supplemental Fig. 7,
we show additional results where the input point patterns, gener-
ated by other image stippling methods [Zhou et al. 2012] [Salaün
et al. 2022], can be edited using our framework.

8.3 Point pattern expansion
Here we train our network on density from the Tree Cover Density
[Büttner and Kosztra 2017] dataset in combination with random
spatially-varying correlation maps using anisotropic Gaussian ker-
nel with varying kernel size and rotation as detailed in Supplemen-
tal Sec. 1.3. Similar works can be found in Kapp et al. [2020], Tu
et al. [2019] and Huang et al. [2022] for sketch-based or example-
based point distribution synthesis.
Figure 11 illustrates one such representative example of point-

based texture synthesis using our method. Our network reconstructs
the density and correlation map that captures the gradient change
of correlation and spatially-varying density. By using the content-
aware filling tool in Adobe Photoshop, we can perform texture
expansion (second column) based on the network output. More
specifically, we first expand the canvas size of the map, select the
unfilled region, and use content-aware filling to automatically fill
the expanded background. We also compare our method with a
state-of-the-art point pattern synthesis method from Tu et al. [2019]
which takes an exemplar point pattern as input and uses VGG-
19 [Simonyan and Zisserman 2015] features for optimization.

8.4 Realizability
We construct the manifold Fig. 5 from exemplars that are realiz-
able, but an interpolation of realizable PCFs is not guaranteed to
be realizable. We test if realizability still holds in practice as fol-
lows. For each PCF 𝑔(z𝑖 ), we generate a point set instance using our
method and compute the resulting PCF 𝑔′(z𝑖 ). We then compute
𝐴 = E𝑖 [( |𝑔′(z𝑖 ) − 𝑔(z𝑖 ) |)], the average error between PCF and real-
ized PCF and 𝐵 = max𝑖 𝑗 ( |𝑔(z𝑗 ) − 𝑔(z𝑖 ) |) the maximum difference
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Input points Network output Our editing Synthesized points

Fig. 9. Input points (first column) generated by our synthesis and mapped to raster images (second column). An edit is performed in Adobe Photoshop (third
column), and the a new point patterns is resynthesized (fourth column). In the first row, we edit the background correlation using the 𝐴𝐵 channels and add
some flowers on the hair using the 𝐿 channel. The second row shows another edit where we change the correlation in the background using the 𝐴𝐵 channels.
In the third row we change the correlation in the background (𝐴𝐵 channels) and add a density gradient (𝐿 channel). To generate the results in the second
column from the first column, we use the neural networks trained on our human faces, animal faces and churches datasets, respectively.

between any two PCFs. The relative error A/B is 3×10−5, indicating
that the realization error is five order of magnitude smaller than the
PCF signal itself.

8.5 Comparisons
Comparisons with Öztireli and Gross [2012]. To the best of our

knowledge, Öztireli and Gross [2012] is the most relevant related
work which studies the space of point correlations using PCFs.
However, we observe that PCFs are not the best way to character-
ize the perceptual differences between different point correlations.
In Fig. 12, we show that the Gram matrices (our input proximity to
MDS) better encode the perceptual similarity between neighboring
point correlations.

Comparisons with Roveri et al. [2017]. Figure 13 shows an example
of synthesizing point patterns using our synthesis method and the
synthesis method proposed by Roveri et al. [2017]. To the best of
our knowledge, Roveri et al. [2017] is the only competitor that
supports point pattern synthesis from spatially-varying density and
correlation. We demonstrate that their method may synthesize point
patterns with artifacts around the sharp transitions between two
correlations (bottom-right and top-left of the logo). Our method, by
taking the bilateral term into account, can handle sharp transition
between correlations more accurately.

This relation can be further quantified as follows: Let 𝑃 be a point
pattern, 𝑃 be an edited version of that and 𝑔(𝑃), respectively, 𝑔(𝑃)
be their correlations. Now, first, let 𝑔PCA (𝑃) be the correlations of
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Input points Output synthesized points Input points Output synthesized points

Fig. 10. Our NN maps the input point pattern to a density and correlation map. To obtain different point pattern editing effects, we apply different advanced
filters to the output density map. From left, the second column shows the relighting effect using the method by ClipDrop [2023]. Fourth column shows the
change in the facial expression and the eyes direction performed using a neural filter from Adobe Photoshop.

After editing operation Our edit-aware output Tu et al. [2019]
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After editing operation Our edit-aware output Tu et al. [2019]

Fig. 11. Starting from an input pattern of tree cover density (left, top), we use a network specialized on geomatic data to estimate correlation and density (left,
bottom). We can then apply existing image operations, such as Adobe Photoshop’s “Content-Aware Fill” (second column) to achieve “Point Pattern Expansion”
(third column), which compares favorably to direct optimization of points to match the inputs’ VGG-based Gram matrices, deep correlation matrices and
histograms [Tu et al. 2019] (last column).

𝑃 , projected into the space spanned by the PCA of the correlations
in and only in 𝑃 , and, second, 𝑔Ours (𝑃) be the correlations of 𝑃 ,
projection into our palette (Fig. 5). The error of those projections is
𝑒PCA = |𝑔PCA (𝑃)−𝑔(𝑃) | and 𝑒Ours = |𝑔Ours (𝑃)−𝑔(𝑃) | , respectively.
We evaluate these error values for different figures. Fig. 1 shows
96× improvement, Fig. 8 shows 130× improvement and the three
rows in Fig. 9 shows 471×, 461× and 59× improvement using our
approach (𝑒Ours vs. 𝑒PCA). This indicates that our latent space can
preserve one to two order of magnitudes more edit details than
Roveri et al. [2017] approach which restricts itself to the input
exemplar.

8.6 User study
We performed a set of user experiments to verify i) the perceptual
uniformity of our embedding ii) the ability of users to navigate in
that space iii) the usefulness of the resulting user interface.

Embedding user experiment. 34 subjects (S) were shown a self-
timed sequence of 9 four-tuples of point patterns with constant
density and correlation in a horizontal arrangement (Fig. 12). The

leftmost pattern was a reference. The three other patterns were near-
est neighbors to the reference in a set of: i) our basis patterns using
our perceptual metric, ii) our basis patterns using PCF metric, and
iii) patterns from the PCF space suggest by Öztireli and Gross [2012]
using PCF metric. Ss were instructed to rate the similarity of each
of the three leftmost patterns to the reference on a scale from 1 to 5
using radio buttons.

The mean preferences, across the 10 trials, were a favorable 3.59,
2.52 and 2.55 which is significant (𝑝 < .001, two-sided 𝑡-test) for
ours against both other methods. A per-pattern breakdown is seen
in Fig. 14. This indicates our metric is perceptually more similar to
user responses than two other published ones. Figure 12 shows two
examples where the nearest-neighbor of the query point pattern is
perceptually different using different metrics. The PCF of two point
patterns can be similar even when they are perceptually different.

Navigation user experiment. In this experiment, 𝑁 = 9 Ss were
shown, 8 reference point correlations and, second, the palette of all
correlations covered by our perceptual embedding (Fig. 5). Ss were
asked to pick coordinates in the second image by clicking locations
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Input Ours (Gram) Ours (PCF 1K) Öztireli and Gross [2012] (PCF 8K)
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Fig. 12. For an input point pattern, we query its nearest neighbor in the latent space. Using Gram matrices (middle-left) the nearest neighbor quality is closer
to the input than using PCFs (middle-right). The inset images alongside PCFs show the latent space coordinates. The correlation space from Öztireli and
Gross [2012] uses 8K PCFs but is still not diverse enough to provide good nearest neighbor for the input. Our latent space has only 1000 base point patterns.
We also perform a user study on this as detailed in Sec. 8.6.

in the embedding, so that the corresponding point correlations of the
picked coordinates perceptually match the reference correlations.
The users’ locations were off by 14.9 % of the embedding space

diagonal. We would not be aware of published methods for intuitive
correlation design to compare this number to. Instead, we have com-
pared to the mistakes users make when picking colors using the LAB
color picker in Adobe Photoshop. Another 𝑁 = 9 Ss, independent to
the ones shown the palette of correlations, made an average mistake
of 21.3% in that case. We conclude, that our embedding of pattern
correlation into the chroma plane is significantly more intuitive
(𝑝 < 0.2, 𝑡 test) than picking colors. Fig. 15 shows the points users
clicked (small dots), relative to the true points (large dots).

Usefulness experiment. Ss were asked to reproduce a target stip-
pling with spatially varying correlation and density by means of
Adobe Photoshop that was enhanced to handle point correlation
as LAB space using our customized interface. Ss were shown the
point patterns of our perceptual latent space, and asked to edit the
density and correlation separately to reproduce the reference from
an initialized LAB image. After each editing, generating the point
pattern incurred a delay of one minute. Note that we intention-
ally reduce the number of iterations to optimize the point patterns
from user edits to offer faster feedback in around a minute with
around 10,000 points. Details on this experiment are found in Sup-
plemental Sec. 2.4. There is no objective metric to measure the result

quality, so we report three user-produced point patterns in Fig. 16.
The whole process takes 15 minutes on average for all three users,
as they usually require multiple trials on picking the correlations
and our synthesis method does not run interactively.

8.7 Performance
M
in
ut
es

35k0 Points
0

10

Fig. 17. Timing.

We summarize the run-time statistics
of our synthesis method w.r.t. the num-
ber of synthesized points in Fig. 17.
Editing time is not reported as it can
be biased by the editing skills of the
users.

9 CONCLUSION AND FUTURE WORK
We propose a novel framework to facilitate point pattern design,
by introducing a perceptual correlation space embedded in a two-
channel image using a dimensionality reduction method (MDS).
This allows users to design or manipulate density and correlation by
simply editing a raster image using any off-the-shelf image editing
software. Once edited, the new features can be resynthesized to the
desired point pattern using our optimization (Sec. 6.1). To better han-
dle sharp transitions in density and correlation during synthesis, we
formulate a novel edge-aware PCF (Sec. 5) estimator. The resulting
framework allows wide range of manipulations using simple image
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Roveri et al. [2017] Ours

Fig. 13. We compare the synthesis quality of our optimization against Roveri
et al. [2017]. To run Roveri et al. method (left), we use the stored PCFs within
each pixel of 𝐹 . The zoom-ins in the bottom two rows show that Roveri et al.
cannot handle well the sharp transitions in the correlations.

Pr
ef

er
en

ce

★★ ★★ ★★ ★★ ★★ ★★ ★★ ★★ ★★ ★★

All

4

3

2

1

0

Ours Gram Ours PCF Oztireli & Gross [2012]

Fig. 14. Results of the embedding user experiment. Errors bars are standard
errors of the mean. A black or gray star is significance against our method
at the 𝑝 = .001 or .005-level.

editing tools that were not available to point patterns before. Users
can design novel spatially varying point correlations and densities
without any expert knowledge on PCF or power spectra or can use
a NN to get correlation and density for a specific class, such as faces.

Limitations. The latent space spanned by the bases point correla-
tions in Fig. 5 is by no means perfect. Synthesizing point patterns
with smooth transitions from two extreme locations in the latent
space may result in some unwanted artifacts. Our synthesis method
takes minutes to synthesize points which is far from interactive rate
that is more friendly to artists and users.

Latent space as points (see Fig. 5) Chroma (𝐴𝐵-channel)

Fig. 15. Results of the navigation user experiment. Users are shown the
latent space visualized as spatially-varying points (Fig. 5) on the left and as
spatially-varying chroma on the right. The large dots represent the locations
of our selected 8 reference point patterns. The small dots are the locations
that the users chose as perceptually similar point patterns wrt. the reference.

Future work. A neural network with such latent space is a promis-
ing direction where the correlations within the geomatic data can
be predicted and edited according to user-defined conditions (envi-
ronment, pollution, global warming, etc). Our approach happens to
rasterize points, which ideally is to be replaced by directly operating
on points Qi et al. [2017]; Hermosilla et al. [2018].
The editing operations can also be improved by proper artistic

guidance or by interactive designing tools that intuitively manipu-
late the desired density and correlations for desired goals. Extending
our pipeline for visualization purposes is another fascinating fu-
ture direction. Another interesting future direction is to extend the
current pipeline to multi-class and multi-featured point patterns,
which appear in real-world patterns. Designing a latent pattern
space that spans a larger gamut of correlations (also anisotropic and
regular ones) present in nature (e.g., sea shells, tree, stars, galaxy
distributions) is a challenging future problem to tackle. There is
an exciting line of future works that can be built upon our frame-
work. Many applications like material appearance, haptic rendering,
smart-city design, re-forestation, planet colonization can benefit
from our framework.
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