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INTRODUCTION
In this supplemental, we provide further details on the implementa-
tion (Sec. 1), as well as additional results (Sec. 2).

1 ADDITIONAL IMPLEMENTATION DETAILS

1.1 Point correlations generation
Weuse amixture of Gaussians to sample the gamut of possible power
spectra. We use power spectra here, as they allow us to directly
work with different range of frequencies unlike Pair Correlation
Functions (PCFs). The value of a power spectrum bin 𝑝𝑏 is computed
as

𝑝𝑏 =

𝑛GMM∑︁
𝑖=1

(
𝑤𝑖 · exp(−

(𝑏 − 𝜇𝑖 )2

2𝜎2
𝑖

)
)
+ 𝛾 . (1)

We use a mixture with, randomly, either 𝑛GMM = 1 or 𝑛GMM = 2
Gaussians and sample the parameters from the range 𝛾 ∈ {0, 1} ,
𝜇𝑖 ∈ [0, 68], 𝜎𝑖 ∈ [2, 12], and𝑤𝑖 ∈ [1, 3], respectively, so as to cover
the required range of frequencies, including blue, green and red
noises. We vary 𝑏 from 0 to𝑚 = 63. The DC 𝑝0 is set to 0. A sample
of 100 random power spectra produced by this approach is seen in
Fig. 1.
The generated power spectra are only used to run the method

of Leimkühler et al. [2019] to produce a point pattern that is used
in the following steps, while the power spectrum can be discarded.
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Fig. 1. Example power spectra used to learn the perceptual embedding.

1.2 Optimal learning rate details
The best Learning Rate (LR) 𝜆 for a correlation 𝑔 is the one out of
0.02, 0.01, 0.005, 0.001, 0.0005, 0.0001 and 0.00005 that, when using a
fixed number of 1000 iterations to minimize PCF error of a randomly
initialized pattern, leads to the lowest VGG error. We find these {𝜆𝑖 }
in a grid search pre-process for the set of all training PCFs {𝑔𝑖 }.

1.3 Data generation for neural network-aided point
pattern design

We achieve this by utilizing our proposed latent space and a large
set of images to generate a dataset with varying density maps (rep-
resented by gray-scale images) and varying correlation maps (rep-
resented by different colors). All the density and correlation maps
have the same resolution 256 × 256.
For each density and correlation map of the following datasets,

our synthesis is used to generate a point pattern with spatially vary-
ing density and correlation to get pairs (a point pattern, a density
and correlation map) for training our networks. The number of
points is computed as 𝑛 = 50, 000 × Ey (1 − 𝑑 (y)). Fig. 2 shows
examples of paired training data from different datasets.

Human faces stippling dataset. We generate the human faces stip-
pling dataset using the face images from Lee et al. [2020]. We use
10,000 gray-scale face images as the density maps. Each of the face
images are used to generate two correlation maps, one for uniform
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Fig. 2. Examples of paired training data from human faces, animal faces, churches and tree cover density datasets, respectively.
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Fig. 3. Our adapted cGAN architecture.

correlation with a random chroma assigned to all pixels, another
for spatially-varying correlations. To generate a spatially-varying
correlation map, we utilize the facial segmentation masks including
skin, hair, background and generate a correlation map by assigning
random chroma to each of the segment. In total, we generate 20,000
density and correlation maps.

Animal faces and outdoor churches stippling datasets. Similarly,
we use the gray-scale images of animal faces [Choi et al. 2020].
and outdoor churches [Yu et al. 2015] as density maps for the two
datasets. Different from the human faces dataset Lee et al. [2020],
no segmentation masks are provided for animals faces and churches.
Therefore, for each density map, we generate a uniform correlation
map by randomly sampling a color and assign it to all pixels. In
total, we generate around 15,000 density and correlation maps.

Tree Cover Density dataset for point pattern expansion. We use
the Tree Cover Density data [Büttner and Kosztra 2017] as our den-
sity maps. To generate a correlation map for each density map, we

generate either a uniform correlation maps or a spatially-varying
correlation maps using anisotropic Gaussian kernels with varying
locations, kernel sizes and orientations. To generate a uniform cor-
relation map, we randomly sample a color and assign it to all pixels.
To generate a spatially-varying correlation map, the number of
Gaussian kernels is randomly sampled from [2, 16]. For each of the
Gaussian kernel, the location (mean) is randomly sampled in [0, 1],
the orientation is randomly sampled from [-180, 180] degrees and
the kernel size (variance) for x-, y-axis are randomly sampled from
[0.15, 0.25]. The Gaussian kernels are summed with equal weight
to generate a correlation map. In total, we generate around 20,000
density and correlation maps.

1.4 Network architecture and training
Fig. 3 shows the details of our network architecture, adapted from
the cGAN [Isola et al. 2017] framework. In the generator side, we
take rasterized points as input and output the density and correlation
maps in separate branches. The density and correlation predictions
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(a) Input image (b) Zhou et al. [2012]

(c) Öztireli and Gross [2012] (d) Ours (green)

(e) Ours (blue) (f) Ours (blue & green)

Fig. 4. Our framework provides a straightforward way to design spatially
varying point correlations by picking correlations from our correlation
palette. The picked correlations are visualized as chroma in (d), (e) and
(f), which automatically find the corresponding PCF from the embedded
space.

are concatenated in the output layer followed by a Sigmoid function.
We use a U-Net architecture with 6 downsampling and upsampling
layers with skip connections. For the discriminator, we use a three-
layer convolutional architecture to extract patch-based features.

Point patterns are rasterized to a resolution of 256 × 256 as input.
Output is the three-channel image for each rasterized point pattern.
Compared with the original framework [Isola et al. 2017], the major
change is to use two branches for regressing density and correlation
map separately for better quality. Predicted density and correlation
are concatenated at the last layer, followed by a Sigmoid function to
normalize output values between [0, 1]. The network is trained with
a combination of L1 loss and adversarial loss Ladv between the
output and the ground truth. The total loss Ltot = L1 + 0.001Ladv

is minimized to update network weights during training. We use
the ADAM optimizer [Kingma and Ba 2014], with an initial learning
rate of 0.0001 for both generator and discriminator and a batch
size of 8. Learning rate decays by half after every 100 epochs. The
network is trained for 400 epochs in 24 hours. With each 256 × 256
rasterized point image as input, the network inference time is about
0.005 seconds per frame to get the density and correlation map with
a resolution of 256 × 256 × 3.

2 ADDITIONAL RESULTS

2.1 Latent space
One property about our point correlation embedding space is that
we locate some known point correlations to their corresponding
semantic colors including blue, green, pink/red and step noises
generated by Leimkühler et al. [2019]. The found colors can roughly
match the semantic meaning, as shown in Fig. 5. More specifically,
we search those four noises (blue, green, red, step noises) in our
embedding space using Eq. 4 in the main paper. The colors of their
nearest-neighbors are shown in the second row. The colors are then
used to re-synthesize the point sets as shown in the third row.

2.2 Ab-initio point pattern design
In Fig. 4, we compare our 𝐶𝐼𝐸𝐿𝐴𝐵 space representation to tradi-
tional approaches [Zhou et al. 2012; Öztireli and Gross 2012]. Unlike
these methods, we do not need to tailor a specific power spectrum or
a PCF to represent point correlations which requires expert knowl-
edge from the end users. Instead, we can simply pick correlations
from our correlation palette to design the point correlations and use
that to synthesize point patterns. We start with a given density map
in Fig. 4(a). Figure 4(b) and (c) uses traditional PCF representation.
Figure 4(d) and (e) shows our green and blue noise stippling which
require painting the 𝐴𝐵-channel with the specific color (latent co-
ordinate). green and blue noise stippling which require painting the
𝐴𝐵-channel with the specific color (latent coordinate). We create
spatially varying point pattern Fig. 4(f) by simply assigning green
color to the face and blue color to the background Previous meth-
ods [Zhou et al. 2012; Öztireli and Gross 2012] are not able to create
point patterns with spatially-varying correlations like ours.

2.3 Neural network-aid point pattern design
Ablation study. Here we study the impact of our network (trained

on faces) components. Firstly, we demonstrate that our network
is important in terms of density estimation. As shown in Fig. 6
(first row), one way to estimate density from points is to perform
traditional kernel density estimation. However, this can lead to
blurry results given the number of points is finite. Our network
trained on face images, on the other hand, can reconstruct higher-
quality density map. Note that no existing method can perform
correlation estimation from points, both density and correlation
estimation branches are important in our network. Secondly, we
study the impact of using Ladv during training. The second row
shows that training with Ladv can produce sharper density and
correlation map that is used to synthesize points closer to the input
compared with training without Ladv.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.



1:4 • Xingchang Huang, Tobias Ritschel, Hans-Peter Seidel, Pooran Memari, and Gurprit Singh

Input points

Colors

Re-synthesized points

Fig. 5. We search four known noises (blue, green, red, step noises) generated by Leimkühler et al. [2019] their nearest-neighbors in our embedding space using
VGG16 Simonyan and Zisserman [2014] based gram metric as shown in main paper equation 1. The color of their nearest-neighbors are shown in the second
row. Lastly, we can use our synthesis method to realize back similar point patterns.

Input points from existing methods. In Fig. 7, the input points are
synthesized using existing methods. We use Zhou et al. [2012] to
generate the input points with CCVT profile (in the first row) and
Salaün et al. [2022] to generate blue noise face stippling (in the
second row). Our network reconstructs the underlying correlation
and density which can be edited to obtain new synthesized points
with spatially-varying correlation. Note that our network can only
faithfully reconstruct the correlations which are covered by the
latent space.

2.4 User study
Usefulness experiment. In this experiment, we first explain the

concept of density (𝐿-channel) and correlation (𝐴𝐵-channel) to the

users so that they are able to pick correlation from our correlation
palette and density as otherwise they are able to pick color by
switching between the 𝐿- and 𝐴𝐵-channels, a built-in function of
Photoshop that can natively work in LAB mode.
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Input points with KDE Synthesized points (KDE) Our network Synthesized points

Input points without Ladv Synthesized points with Ladv Synthesized points

Fig. 6. In the first row, we analyze the impact of density estimation from given point pattern. We compare traditional kernel density estimation (KDE) with
our network density reconstruction. In the second row, we study the impact of using different losses during training.

Input points Network output Our editing Synthesized points

Fig. 7. We generate the input points using Salaün et al. [2022] (first row) and Zhou et al. [2012] (second row). These point patterns goes as input to our
network to obtain the underlying density and correlation map (second column). We change the background correlation in both rows (third column), sharpen
the density map and change the hair correlation in the second row, to get edited point patterns (fourth column).

Cheng-Han Lee, Ziwei Liu, Lingyun Wu, and Ping Luo. 2020. MaskGAN: Towards
Diverse and Interactive Facial Image Manipulation. In CVPR.

Thomas Leimkühler, Gurprit Singh, Karol Myszkowski, Hans-Peter Seidel, and Tobias
Ritschel. 2019. Deep Point Correlation Design. ACM Trans. Graph. 38, 6 (2019).

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.



1:6 • Xingchang Huang, Tobias Ritschel, Hans-Peter Seidel, Pooran Memari, and Gurprit Singh

A Cengiz Öztireli and Markus Gross. 2012. Analysis and synthesis of point distributions
based on pair correlation. ACM Trans. Graph. 31, 6 (2012).

Corentin Salaün, Iliyan Georgiev, Hans-Peter Seidel, and Gurprit Singh. 2022. Scalable
Multi-Class Sampling via Filtered Sliced Optimal Transport. ACM Trans. Graph.
(SIGGRAPH) 41, 6 (2022).

Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong
Xiao. 2015. Lsun: Construction of a large-scale image dataset using deep learning
with humans in the loop. arXiv preprint arXiv:1506.03365 (2015).

Yahan Zhou, Haibin Huang, Li-Yi Wei, and RuiWang. 2012. Point sampling with general
noise spectrum. ACM Trans. Graph. 31, 4 (2012).

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.


	1 Additional Implementation Details
	1.1 Point correlations generation
	1.2 Optimal learning rate details
	1.3 Data generation for neural network-aided point pattern design
	1.4 Network architecture and training

	2 Additional Results
	2.1 Latent space
	2.2 Ab-initio point pattern design
	2.3 Neural network-aid point pattern design
	2.4 User study

	References

