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1. Analysis of Multi-scale Optimization

By-example point pattern synthesis methods usually requires users
to tune with the window size or kernel size parameters as shown
previous state-of-the-art methods [MWT11] [RÖM*15] [TLH19],
to get satisfying synthesis results. Similarly, we use a multi-scale
optimization strategy to preserve local and non-local structures
for the synthesized patterns. Here we discuss the importance of
multi-scale optimization and propose a way to tune with the two
hyper-parameters which control the kernel size of our proposed
Gabor features.

Single-scale vs. Multi-scale optimization. Fig. 1 demonstrates
that our multi-scale optimization is important for preserving both
global and local structures. The value of σ is analogous to receptive
field, higher σ value capture more global structure while low σ fo-
cuses more on local structures. As shown in the figure, optimizing
with only σ1 results in a good global structure, but locally the points
do not follow the regularity in the input. While optimizing only σ2
leads to the missing global structure. Therefore, multi-scale opti-
mization firstly focuses on synthesizing pattern with good global
structure and then refines the local structures during the decrease of
σ value.

Tuning Hyper-parameters. As discussed, a pattern can express
different level of structures and choosing an appropriate window or
kernel size is a necessary step for high-quality synthesis. In some
cases, choosing the parameters wrongly can lead to unpleasing
synthesis results. Therefore, we propose a pragmatic way to tune the
two hyper-parameters, namely c1 and c2. As mentioned, most of the
scenes use c1 in 0.8±0.2 and c2 are 2.8±0.2. For a new test scene,
as default, we start from c1 = 0.6,c2 = 2.6. As shown in Fig. 2,
when the number of points in the exemplar is small, the feature
map of c1 may not show the overall structure of the point pattern
and lead to over-blurring features. This can result in less visually
pleasing results. When we start increasing c1 to be 0.6 and 0.8, the
overall structure becomes more visible. Users can repeat this process
until they are satisfied with the synthesized pattern. Fortunately, our
method allows us to get satisfying synthesis results after few trials
for most of the scenes. We summarize the parameters for all scenes
in Table 1. As shown in the Table, the hyper-parameters are not so
different across a large variety of scenes. This further demonstrates

Table 1: We summarize statistics and parameters used to synthesize
each exemplar. M, S, R refer to the figure in main paper, supplemen-
tal material and the row number of each figure, respectively.

Scene #Classes
#Output
samples

Hyper-parameters
c1 c2

Fig. 5 (M), (a) 1 1124 1.0 3.0
Fig. 5 (M), (b) 1 256 1.0 2.6
Fig. 5 (M), (c) 1 992 0.8 2.6
Fig. 6 (M), (a) 2 208 0.8 2.6
Fig. 6 (M), (b) 2 512 1.6 2.6
Fig. 6 (M), (c) 4 216 1.0 2.8
Fig. 8 (M), R1 1 64 2.0 3.0
Fig. 8 (M), R2 2 512 1.6 2.6
Fig. 8 (S), R1 1 80 1.0 2.6
Fig. 8 (S), R2 1 192 0.8 2.6
Fig. 8 (S), R3 1 508 0.6 2.6
Fig. 8 (S), R4 1 472 0.8 2.6
Fig. 8 (S), R5 1 468 0.8 2.6
Fig. 9 (S), R1 1 424 1.0 2.6
Fig. 9 (S), R2 1 260 1.0 2.6
Fig. 9 (S), R3 1 476 0.8 2.6

Fig. 10 (S), R1 1 804 0.8 2.8
Fig. 10 (S), R2 1 1024 1.0 2.7

that our method is robust to hyper-parameter setting and user can
find a good solution without too much manual effort.

2. Diverse Results

We show that our method inherently supports synthesizing diverse
results given the same exemplar, using randomly initialized point
patterns with different random seeds. Fig. 3 shows three different
outputs with different random initialization given the same input.
Meanwhile, the overall structure looks similar to the exemplar. This
also demonstrates that our method is robust to different initialization.

3. Additional Results

3.1. Ablation Study

Number of channels. In the convolutional filtering step, we define
the number of output channels NC to control the number of random
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Figure 1: Importance of multi-scale optimization. If only optimized with a single scale, the synthesized results (b), (c) will only capture either
global or local structure.

filters we use. Fig. 4 shows how the number of output channels in
the convolutional layer affects the final results. We observe less ac-
curate synthesis results with less filters defined by number of output
channels in the convolutional filters. Increasing the number of output
channels increases the synthesis quality. We find that NC = 120 is
a reasonable choice as increasing the number of channels beyond
120 brings marginal difference while being more computationally
expensive.

Layer for Correlation loss computation. We also study the layer
noted as l chosen for computing Lcorr. We use the 4th (l = 4) layer
for computing Lcorr. Other options are to use output from layer
l = 1,2,3. However, Lcorr becomes more computationally expensive
with higher resolution feature maps. We observe out of memory
issue while using the 1st or 2nd layer. Using the 3rd layer we get
similar outputs as shown in Fig. 5, but the run-time is on average 6
times more than our choice.

3.2. Qualitative Comparisons

Point patterns. We show more results in Fig. 8 and Fig. 9 for
qualitative comparisons between ours methods and previous state-
of-the-art methods. Note that these patterns are included in the
user study. Among them, our method achieves highest user scores
compared with previous state-of-the-art methods on most of the
scenes.

Element patterns. For discrete element-based pattern expansion,
we experiment with different variants of the input exemplars and
the method of [RGF*20]. Fig. 6 shows comparisons on 2-class
patterns using our method, [RGF*20] and [TLH19]. As DiffCom-
positing [RGF*20] use only the Gram loss Lgram in their original
paper, we test 2 more variants using their methods by including the
Deep Correlation loss Lcorr. However, as shown in Fig. 7, we do not
observe obvious improvement using their method, especially on the
orange pattern with clear vertical structures in the middle column.
On the other hand, our method performs better in terms of local and
non-local structures. For patterns with more randomized structures,
our method synthesizes patterns with less overlaps and closer to the
exemplar’s structure compared with [RGF*20].

Further, we show in Fig. 11 that our methods not only apply on
discrete elements in 2D, but also elements with higher-dimensional

Table 2: We perform user study and compute an average score
across 28 users. We show the average score for each pattern where 1
is the worst and 5 is the best. Our method gets better score for all but
one pattern. M, S, R refer to the figures in main paper, supplemental
material and row number of the corresponding figure, respectively.

Scene
User Scores (↑)

[MWT11][RÖM*15][TLH19] Ours

Fig. 5 (M), (a) 1.4286 1.9643 3.6071 4.2857
Fig. 5 (M), (b) 3.7143 2.6071 3.5357 4.6071
Fig. 5 (M), (c) 1.4643 1.3571 3.6071 4.4286
Fig. 8 (S), R1 1.5714 3.0714 2.8571 4.2857
Fig. 8 (S), R2 1.2857 2.3214 4.2857 4.3214
Fig. 8 (S), R3 1.2857 1.9286 3.6071 3.9286
Fig. 8 (S), R4 2.5714 3.0357 4.0357 4.6071
Fig. 8 (S), R5 1.5000 3.9643 2.8214 4.3929
Fig. 9 (S), R1 1.5714 2.5357 3.6071 4.3929
Fig. 9 (S), R2 3.2143 3.0000 2.8929 4.2500
Fig. 9 (S), R3 1.5357 4.5357 3.4643 4.3214
Fig. 9 (S), R4 1.1071 3.3571 2.5000 4.4643
Fig. 10 (S), R1 1.2143 3.2143 2.8929 4.1071
Fig. 10 (S), R2 1.6071 2.7500 2.6429 4.4643

features. As shown in Fig. 11, our method takes input point patterns
with features including depth, scale and 3D orientation for synthesis.
This allows us to use the synthesized patterns for object placement
and pattern design not limited to 2D space.

3.3. User Study

Table 3 shows the numbers of average scores from 28 participated
users for the 14 point patterns used for our user study. Patterns we
use are from Fig. 5 in the main paper, Fig. 8, Fig. 9 and Fig. 10 in
the supplemental material.
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Figure 2: Hyper-parameters analysis. We demonstrate a pragmatic way to tune/increase the parameters c1 and c2 from the default values
c1 = 0.6,c2 = 2.6 to get the final results.
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Figure 3: Diverse results. Given the same exemplar, our method synthesizes diverse outputs with different random initialization.
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Figure 4: Ablation study on number of output channels (NC) in convolutional filters. Increasing NC leads to better results and NC = 120 is a
reasonable choice considering the trade-off between run-time and synthesis quality.

3rd Layer Ours (4th layer) Input 3rd Layer Ours (4th layer)

Figure 5: Ablation study on the layer selected for Lcorr computation. Using the 4th layer output gives similar results compared with using the
3rd layer output, but is much less expensive due to lower resolution features.

Table 3: Quantitative comparisons for point pattern synthesis results of previous methods and ours. M, S, R refer to the figures in main paper,
supplemental material and row number of the corresponding figure, respectively.

Scene
MSE of PCFs (↓) Wasserstein Distance (↓) Chamfer Distance (↓)

[MWT11][RÖM*15][TLH19] Ours [MWT11][RÖM*15][TLH19] Ours [MWT11][RÖM*15][TLH19] Ours

Fig. 5 (M), (a) 0.2678 0.2836 0.2609 0.2459 1.4483 1.1148 1.0222 0.6896 0.0571 0.0440 0.0517 0.0353
Fig. 5 (M), (b) 0.3296 0.3286 0.3103 0.3072 0.4858 0.5166 0.4885 0.3352 0.0962 0.0869 0.0920 0.0429
Fig. 5 (M), (c) 0.6346 0.4913 0.5436 0.3911 2.1869 2.2596 2.2570 0.5287 0.0662 0.0685 0.0719 0.0184
Fig. 8 (S), R1 0.7562 0.7130 0.9043 0.6395 0.6292 0.6382 0.6048 0.7038 0.2131 0.1703 0.2116 0.1601
Fig. 8 (S), R2 0.4253 0.4188 0.3964 0.3656 0.7266 0.5322 0.4303 0.2813 0.1567 0.0701 0.0556 0.0169
Fig. 8 (S), R3 0.3731 0.3422 0.2799 0.2881 0.8372 0.7832 0.8406 0.7158 0.0868 0.0788 0.0905 0.0774
Fig. 8 (S), R4 0.2451 0.2642 0.2376 0.2374 0.6775 0.6040 0.6415 0.5068 0.0803 0.0685 0.0718 0.0344
Fig. 8 (S), R5 0.5038 0.3548 0.3455 0.3538 1.3144 0.2885 1.1597 0.3749 0.1000 0.0342 0.1233 0.0271
Fig. 9 (S), R1 0.5507 0.5537 0.4283 0.4138 1.3111 1.1803 1.3618 0.8991 0.1065 0.1123 0.1200 0.0779
Fig. 9 (S), R2 0.2915 0.2947 0.2858 0.2786 0.7385 0.7409 0.9657 0.6828 0.1221 0.0946 0.1205 0.0990
Fig. 9 (S), R3 0.2174 0.2570 0.2403 0.2427 1.1793 0.6341 0.7887 0.6230 0.1031 0.0543 0.0612 0.0631
Fig. 9 (S), R4 0.2661 0.2528 0.2623 0.2483 0.7412 0.5076 0.5882 0.2367 0.0746 0.0170 0.0548 0.0149

Fig. 10 (S), R1 0.4153 0.3438 0.2872 0.3429 0.9996 0.8678 0.8087 0.6586 0.0723 0.0394 0.0408 0.0294
Fig. 10 (S), R2 0.2401 0.2218 0.2199 0.2219 0.5531 0.3562 0.4701 0.2345 0.0473 0.0043 0.0312 0.0070
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Figure 6: Discrete element-pattern expansion. We show 2-, 2-
and 3-class examples from left to right and comparisons be-
tween [TLH19][RGF*20] and our method from top to bottom.
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Figure 7: Discrete element-pattern expansion with 4-class exam-
ples. We test two more variants of [RGF*20] with only Lcorr and
a weighted combination of Lcorr and Lgram for fair comparisons
with [TLH19] and our method.
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Input Ma et al. [MWT11] Roveri et al. [RÖM*15] PPS [TLH19] Ours

Figure 8: Additional comparisons between prior methods [MWT11], [RÖM*15], [TLH19] and ours, respectively.
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Input Ma et al. [MWT11] Roveri et al. [RÖM*15] PPS [TLH19] Ours

(a) (b) (c) (d) (e)
Figure 9: Additional comparisons between prior methods [MWT11], [RÖM*15], [TLH19] and ours, respectively.
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Input Ma et al. [MWT11] Roveri et al. [RÖM*15] PPS [TLH19] Ours

Figure 10: Additional comparisons between prior methods [MWT11], [RÖM*15], [TLH19] and ours, respectively.

Input Ours (point pattern) Ours (rendered) Input Ours (point pattern) Ours (rendered)

(a) 2-class, 5-attribute (b) 2-class, 2-attribute

(c) 2-class, 5-attribute (d) 6-class, 5-attribute
Figure 11: Multi-attribute and multi-class point pattern synthesis results. We show 2-class examples from (a) to (c) and a 6-class example in
(d). To visualize the patterns with multiple classes and attributes, we show 2D point patterns along with the rendering of 5 attributes including
scale, depth and 3D orientation.
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